8 research outputs found

    Categorical Perception of Lexical Tones in Mandarin-speaking Congenital Amusics

    Get PDF
    Previous research suggests that within Mandarin-speaking congenital amusics, only a subgroup has behavioral lexical tone perception impairments (tone agnosia), whereas the rest of amusics do not. The purpose of the current study was to investigate the categorical nature of lexical tone perception in Mandarin-speaking amusics with and without behavioral lexical tone deficits. Three groups of listeners (controls, pure amusics and amusics with tone agnosia) participated in tone identification and discrimination tasks. Indexes of the categorical perception of a physical continuum of fundamental frequencies ranging from a rising to level tone were measured. Specifically, the stimulus durations were manipulated at 100 and 200 ms. For both stimulus durations, all groups exhibited similar categorical boundaries. The pure amusics showed sharp identification slopes and significantly peaked discrimination functions similar to those of normal controls. However, such essential characteristics for the categorical perception of lexical tones were not observed in amusics with tone agnosia. An enlarged step-size from 20 Hz to 35 Hz was not able to produce any discrimination peaks in tone agnosics either. The current study revealed that only amusics with tone agnosia showed a lack of categorical tone perception, while the pure amusics demonstrated typical categorical perception of lexical tones, indicating that the deficit of pitch processing in music does not necessarily result in the deficit in the categorical perception of lexical tones. The different performance between congenital amusics with and without tone agnosia provides a new perspective on the proposition of the relationship between music and speech perception

    Resting-state functional connectivity and pitch identification ability in non-musicians

    No full text
    Previous studies have used task-related fMRI to investigate the neural basis of pitch identification (PI), but no study has examined the associations between resting-state functional connectivity (RSFC) and PI ability. Using a large sample of Chinese non-musicians (N = 320, with 56 having prior musical training), the current study examined the associations among musical training, PI ability, and RSFC. Results showed that musical training was associated with increased RSFC within the networks for multiple cognitive functions (such as vision, phonology, semantics, auditory encoding, and executive functions). PI ability was associated with RSFC with regions for perceptual and auditory encoding for participants with musical training, and with RSFC with regions for short-term memory, semantics, and phonology for participants without musical training

    Towards Developmental Connectomics of the Human Brain

    Get PDF
    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental dyslexia). Collectively, we showed that delineation of the brain network from a connectomics perspective offers a unique and refreshing view of both normal development and neuropsychiatric disorders

    Genome-wide Analysis and Expression Profiling under Heat and Drought Treatments of HSP70 Gene Family in Soybean (Glycine max L.)

    Get PDF
    Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development

    The neural bases of the multiplication problem-size effect across countries

    Get PDF
    Multiplication problems involving large numbers (e.g., 9x8) are more difficult to solve than problems involving small numbers (e.g., 2x3). Behavioral research indicates that this problem-size effect might be due to different factors across countries and educational systems. However, there is no neuroimaging evidence supporting this hypothesis. Here, we compared the neural correlates of the multiplication problem-size effect in adults educated in China and the United States. We found a greater neural problem-size effect in Chinese than American participants in bilateral superior temporal regions associated with phonological processing. However, we found a greater neural problem-size effect in American than Chinese participants in right intra-parietal sulcus associated with calculation procedures. Therefore, while the multiplication problem-size effect might be a verbal retrieval effect in Chinese as compared to American participants, it may instead stem from the use of calculation procedures in American as compared to Chinese participants. Our results indicate that differences in educational practices might affect the neural bases of symbolic arithmetic

    Differences of inter-tract correlations between neonates and children around puberty: A study based on microstructural measurements with DTI

    Get PDF
    The human brain development is a complicated yet well-organized process. Metrics derived from diffusion tensor imaging (DTI), including fractional anisotropy (FA), radial (RD), axial (AxD) and mean diffusivity (MD), have been used to noninvasively access the microstructural development of human brain white matter (WM). At birth, most of the major WM tracts are apparent but in a relatively disorganized pattern. Brain maturation is a process of establishing an organized pattern of these major WM tracts. However, how the linkage pattern of major WM tracts changes during development remains unclear. In this study, DTI data of 26 neonates and 28 children around puberty were acquired. 10 major WM tracts, representing four major tract groups involved in distinctive brain functions, were traced with DTI tractography for all 54 subjects. With the 10 by 10 correlation matrices constructed with Spearman’s pairwise inter-tract correlations and based on tract-level measurements of FA, RD, AxD and MD of both age groups, we assessed if the inter-tract correlations become stronger from birth to puberty. In addition, hierarchical clustering was performed based on the pairwise correlations of WM tracts to reveal the clustering pattern for each age group and pattern shift from birth to puberty. Stronger and enhanced microstructural inter-tract correlations were found during development from birth to puberty. The linkage patterns of two age groups differ due to brain development. These changes of microstructural correlations from birth to puberty suggest inhomogeneous but organized myelination processes which cause the reshuffled inter-tract correlation pattern and make homologous tracts tightly clustered. It opens a new window to study WM tract development and can be potentially used to investigate atypical brain development due to neurological or psychiatric disorders

    Genetic variations in the serotonergic system contribute to amygdala volume in humans

    Get PDF
    The amygdala plays a critical role in emotion processing and psychiatric disorders associated with emotion dysfunction. Accumulating evidence suggests that amygdala structure is modulated by serotonin-related genes. However, there is a gap between the small contributions of single loci (less than 1%) and the reported 63-65% heritability of amygdala structure. To understand the "missing heritability," we systematically explored the contribution of serotonin genes on amygdala structure at the gene set level. The present study of 417 healthy Chinese volunteers examined 129 representative polymorphisms in genes from multiple biological mechanisms in the regulation of serotonin neurotransmission. A system-level approach using multiple regression analyses identified that nine SNPs collectively accounted for approximately 8% of the variance in amygdala volume. Permutation analyses showed that the probability of obtaining these findings by chance was low (p = 0.043, permuted for 1000 times). Findings showed that serotonin genes contribute moderately to individual differences in amygdala volume in a healthy Chinese sample. These results indicate that the system-level approach can help us to understand the genetic basis of a complex trait such as amygdala structure

    Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study

    No full text
    Heshouwu (HSW), the dry roots of Polygonum multiflorum, a classical traditional Chinese medicine is used as a tonic for a wide range of conditions,particularly those associated with aging. However, it tends to be taken overdose or long term in these years, which has resulted in liver damage reported in many countries. In this study, the indicative roles of nine bile acids (BAs) were evaluated to offer potential biomarkers for HSW induced liver injury. Nine BAs including cholic acid (CA) and chenodeoxycholic acid (CDCA), taurocholic acid (TCA), glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), deoxycholic acid (DCA), glycodeoxycholic acid (GDCA), ursodeoxycholic acid (UDCA) and hyodeoxycholic acid (HDCA) in rat bile and serum were detected by a developed LC-MS method after 42 days treatment. Partial least square-discriminate analysis (PLS-DA) was applied to evaluate the indicative roles of the nine BAs, and metabolism of the nine BAs was summarized. Significant change was observed for the concentrations of nine BAs in treatment groups compared with normal control; In the PLS-DA plots of nine BAs in bile, normal control and raw HSW groups were separately clustered and could be clearly distinguished, GDCA was selected as the distinguished components for raw HSW overdose treatment group. In the PLS-DA plots of nine BAs in serum, the normal control and raw HSW overdose treatment group were separately clustered and could be clearly distinguished, and HDCA was selected as the distinguished components for raw HSW overdose treatment group. The results indicated the perturbation of nine BAs was associated with HSW induced liver injury; GDCA in bile, as well as HDCA in serum could be selected as potential biomarkers for HSW induced liver injury; it also laid the foundation for the further search on the mechanisms of liver injury induced by HSW
    corecore